

Using Combinatorial Test Models to Improve Software
Testing Efficiency

Abstract

Software is virtually omnipresent in today’s world. It has significant impact to the quality of life since the

performance of key institutions of modern society depends on their ability to manage the software lifecycle.

Despite advancements in supporting technologies, the outcome of software product development is difficult

to control, comes with an expensive price tag and, although a significant proportion of the cost of software

projects is allocated for testing, failures still occur with the finished deliverables. An often cited report

draws the alarming conclusion that inadequate software testing incurs a cost of $59.5 billion annually

[NS02]. An increasing number of industry observers denounce this as a software crisis, noting that

progress is no longer viable using conventional methods; new approaches are required to overcome the

current stalemate.

A contrasting analysis of some old, new and “revolutionary” directions in software development seems to

suggest that, beyond differences in the philosophical fundament, they commend one way or another, an

iterative, incremental development in a controlled environment. This practical, common sense strategy is

simply a reflection of the way humans learn and solve difficult problems. And software testing is no

exception of this.

This paper describes a practical solution to improve software testing efficiency through a model-driven

approach. It can be used standalone or applied in addition to other techniques by reusing test cases

determined with other methods addressing most used or riskiest scenarios. It creates concise artifacts that

allow for easy auditing and effective review of a large number of test cases: instead of reviewing cases one

by one, the same effect is achieved by reviewing the rules that generated them.

The proposed solution was designed as a thin wrapper of current combinatorial, pair-wise techniques which

have been long used to provide a systematic, statistical way of creating test case inputs for scenarios where

exhaustive testing is virtually impossible to conduct. It naturally provides support for implementation of

decoupled models, an efficient method of eliminating ineffective pairing of independent test case inputs.

The solution bundles a tool that is easy to use to author models and to transform them into test cases inputs.

With this tool, models can be developed incrementally, morphed or split, with the impact of each step

immediately quantified and available for analysis. As such, models are truly used to direct the course of

understanding, design and implementation of software testing. The net result is determined by the

effectiveness of combinatorial techniques applied to software testing, which research seems to indicate is

96% as effective as exhaustive testing, while typically using 95% less test cases.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

2

Copyrights and Trademarks

© 2004-2008 QTAssistant.com. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the

express permission of QTAssistant.com. The information contained herein may be changed without prior

notice.

Some software products marketed by QTAssistant.com and its distributors contain proprietary software

components of other software vendors.

Microsoft, Microsoft Windows and Microsoft Internet Explorer are trademarks, or registered trademarks of

Microsoft Corporation in the United States, other countries, or both.

Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States, other

countries or both.

Macintosh is registered trademark and Safari is a trademark of Apple Computer, Inc. in the United States

other countries, or both.

Linux is a trademark of Linus Torvalds.

IBM and Rational are trademarks of International Business Machines Corporation in the United States,

other countries, or both.

OMG and UML are trademarks of the Object Management Group.

Other company, product, or service names may be trademarks or service marks of others.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

3

Combinatorial Test Models

Overview

A Combinatorial Test Model (CTM) defines a view of the system under test which can be used for

automatic generation of Data Pools and Test Case kernels. A CTM can be created from scratch or using

Entity-Relationship models, W3C XML Schema or UML. The CTM foundation is the practical application

of mathematical covering arrays theory to interaction software testing.

Background

Many domains of activity are faced with problems where the ideal solution would consist of exhaustive

exploration of all possible combinations of the problem inputs. Other than trivial problems, this approach is

usually not feasible. For software testing, some of the solutions currently used to address this problem are

based on combinatorial techniques.

Combinatorial techniques are rooted in orthogonal arrays. The mathematical background of orthogonal

arrays is beyond the scope of this paper. However, selected aspects will be presented in this section just to

facilitate the understanding of this paper. In many cases, established mathematical notations have been

abandoned in favor of plain language and examples have been called in support of theory.

An orthogonal array is a two-dimensional array, with rows and columns like a table in a database. Each

column represents a parameter or factor. Each parameter has the same number of possible values, referred

to as the level. Each row represents a possible combination of parameters values. The number of factors for

which all possible combinations are found an equal number of times within the array is called strength.

Table 1 shows an orthogonal array for five factors, each factor with two possible values and all possible

two-way combinations covered exactly twice.

A0 B0 C0 D0 E0

A1 B0 C0 D1 E1

A0 B1 C0 D1 E0

A0 B0 C1 D0 E1

A1 B1 C0 D0 E1

A1 B0 C1 D1 E0

A0 B1 C1 D1 E1

A1 B1 C1 D0 E0

Table 1 Orthogonal array with 5 factors, 2 levels and strength 2

For many practical applications, orthogonal arrays have been deemed too restrictive. Covering arrays differ

from orthogonal arrays in that the strength is now determined if all possible combinations are found at least

once. Table 2 shows a covering array that has the same specification as the orthogonal array shown in

Table 1. However, the number of rows in the covering array is less than the one in the orthogonal array

because pairs now have to show at least once.

A0 B1 C1 D0 E0

A1 B0 C0 D1 E1

A0 B0 C0 D1 E0

A1 B1 C1 D1 E1

A1 B1 C0 D0 E1

 Combinatorial Test Models ©2005-2006 QTAssistant.com

4

A1 B0 C1 D0 E0

A0 B0 C0 D1 E1

Table 2 Covering array with 5 factors, 2 levels and strength 2

Parameters in general do not have exactly the same number of levels. Mixed level covering arrays

(sometimes simply referred to as mixed arrays) differ from covering arrays in that each parameter may

have any number of values. Table 3 shows an array with 5 factors, with 2, 3, 2, 4, and 3 levels respectively,

and strength 2.

A0 B2 C1 D0 E1

A1 B1 C0 D2 E2

A1 B0 C1 D3 E0

A0 B0 C0 D1 E1

A0 B1 C0 D0 E0

A1 B2 C1 D1 E2

A0 B2 C0 D2 E0

A0 B0 C0 D3 E2

A1 B1 C1 D2 E1

A1 B0 C1 D0 E2

A1 B1 C0 D3 E1

A0 B1 C1 D1 E0

A0 B0 C0 D2 E1

A0 B2 C0 D3 E0

Table 3 Mixed array with 5 factors and strength 2

The total number of possible combinations for a given set of parameters is calculated by multiplying

together all the levels. The minimum number of combinations required for strength n (n ≥ 2) is calculated

by multiplying together the first n levels sorted in descending order. For the specification in Table 3:

 All possible combinations are 144 in total.

 The number of covering combinations for different strengths is shown in Table 4. Increased

strength yields more combinations with better coverage.

Strength Total combinations

2 14

3 40

4 81

5 144

Table 4 Total number of combinations as a function of strength

 The minimum number or covering combinations for different strengths is shown in Table 5.

Strength Minimum combinations

2 12

3 36

4 72

Table 5 Minimum number of combinations as a function of strength

When applied to software testing, these are some of the most frequently asked questions:

 What is the appropriate strength to use with the array? “Appropriate” could be defined as the

point of diminishing returns at which using an n-strength array is nearly as effective as an n+1-

strength array. [DE02] suggests that “[…] more than 95% of errors in the software studied would

be detected by test cases that cover all 4-way combinations of values”, while concluding that

appropriate strengths could be between 3 and 6, according to dependability requirements.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

5

 What goes as parameters into an array? Since the whole technique provides for interaction testing,

parameters that are meshed together through some dependency should also share an array. Test

cases involving one or more independent parameters would prove useless since the effect of other

parameters on the outcome is not influenced by pairing with these independent parameters.

 What is the best way to handle high risk areas of test case inputs sharing the same array? It

depends on many factors, like the number of parameters involved, levels, and the strengths

considered. One approach would be to extend the high risk strength to the whole array. The other

could be to have high risk areas assigned to another array with the appropriate, higher strength.

The output of this array could then be added as a parameter back in the original array. As an

example, A, C and D from Table 3 require all possible combinations (strength 3). As shown in

Table 4, strength 3 applied to the whole array yields 40 combinations. Separating A, C and D in

another array for all possible combinations, yields 16 combinations. Having a 16-levels parameter

combined with B and E with a strength of 2, yields 48 combinations (somewhat expected, since

this is the minimum number for this scenario). For all reasons, in this case would be better to go

with the first solution that provides better overall coverage with fewer test cases. Let’s assume

another scenario: add two more 3-level factors, E and F to Table 3; have A, B, C and D now

requiring all possible combinations. Strength 4 applied to the modified array yields 126

combinations. Using two arrays approach, yields 96 combinations (using strength 4 and 2). If the

best solution is the one with fewer combinations, this scenario benefits from the second approach.

It is recommended to experiment since there are two many variables to consider. In general,

splitting arrays is recommended when the original array has strength 2, and high risk areas require

strength greater than 3.

For the rest of this document, “covering array” is used to also refer to “mixed array”, unless otherwise

noted.

Basic concepts

The following list summarizes concepts CTM makes reference to and defined here [TP05]1.

Test Context A collection of test cases together with a test configuration on the basis of which the test

cases are executed.

SUT The system under test (SUT) is the entity being tested. The SUT is exercised via its

accessible interaction points by the testing probes. No further information can be

obtained from the SUT as it is a black-box.

Test Objective A test objective describes what should be tested and it is associated with a test case.

Test Case A test case is a specification of one case to test the system including what to test with,

which input, result, and under which conditions. It is a complete technical specification

of how the SUT should be tested for a given test objective. A test case is defined in

terms of sequences, alternatives, loops, and defaults of stimuli to and observations from

the SUT. It implements a test objective.

Stimulus Test data sent to the SUT in order to control it and to make assessments about the SUT

when receiving the SUT reactions to these stimuli.

Data Partition A logical value for a part used in a stimulus or in an observation. It typically defines an

equivalence class for a set of values (e.g., valid user names, etc.).

Data Pool A data pool is a collection of data partitions or explicit values that are used during the

evaluation of test cases. In doing so, a data pool offers a means for providing values or

data partitions for repeated tests.

1 Some definitions have been altered to avoid references to concepts not used in here. For in-depth

studying, the understanding of the original text is recommended.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

6

Wildcard Wildcards are special symbols to represent values or ranges of values. Wildcards allow

the user to explicitly specify whether the value is present or not, and/or whether it is of

any value. Wildcards are used instead of symbols within instance specifications. Three

wildcards exist: a wildcard for any value, a wildcard for any value or no value at all (i.e.

an omitted value), and a wildcard for an omitted value.

The following list summarizes additional concepts.

Covering Array A covering array is basically a two-dimensional array. It is described by the following

fundamental properties:

o N – the number of rows

o k – the number of columns

o (v i) – a set of numbers; v i is the i-th parameter level, representing the

number of distinct values recorded in the i-th column.

o t – the interaction strength (simply referred to as strength)

Nmax is the maximum value for N and can be calculated by multiplying together all v i

Covering Array

Definition

A covering array definition is a named element describing a covering array, including

its fundamental properties, a collection of constraints and references to other covering

arrays. It is a complete technical specification of how to build a covering array.

Parameter A parameter is a uniquely identifiable part used in a stimulus. It is a column of a

covering array. Using types defined by the UML Model, a parameter can be

associated with an enumeration.

Placeholder A placeholder is a subset of the complete set of parts used in a stimulus. It is

associated with a distinct covering array definition. The placeholder’s domain is a

covering array. An example of practical applicability is to vary the interaction

strength for the subset.

Value A value represents a unique state of a part used in a stimulus. It is associated with a

parameter. Using types as defined by the UML Model, a value is the literal describing

possible values of the enumeration.

Value Placeholder A value placeholder is uniquely associated with a covering array.

Domain A domain is a collection of data partitions or explicit values that are used during the

evaluation of test cases by a parameter or placeholder.

Tuple A tuple is a row, or a subset of a row, of a covering array. The notation n-tuple

denotes a tuple with n columns.

Strength The strength of the coverage array is an integer value describing the maximum

number of parameters (n) with the property that all possible ordered n-tuples occur at

least once. It has a minimum value of 2 and a maximum value of k. When the strength

value equals k, N is equal to Nmax. For practical reasons, it is not recommended to

use a value greater than 6.

Inclusion Inclusion is a particular type of constraint applicable to a covering array. It describes

completely one or more rows that must be present in the covering array. It is

associated with a covering array definition.

Exclusion Exclusion is a particular type of constraint applicable to a covering array. It describes

completely one or more rows that must not be present in the covering array. It is

associated with a covering array definition.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

7

Target Context A target context is a literal value intended to be used as a variable in a filter. It can be

associated with a covering array, parameter, placeholder, value, inclusion and

exclusion. Possible uses are:

 Reuse same model in various test contexts

 Create test cases targeting different equivalence classes of test objectives

(“positive”, negative”, etc.)

Concept examples

Problem

An internet based system, the SUT, has to support a variety of browsers, running off different platforms

and using different network connections to their Internet Service Providers. The requirement is to provide a

statistically comprehensive set of test cases, without going through all possible combinations of inputs.

Note: To keep the illustrations brief, yet relevant, we’ve narrowed the selection of possible values to just a few. The

downside of this is in the relatively low percentage of “savings” (around 50%) displayed in the reduction of test cases,

as compared to the total number of possible combinations. By choosing a wider selection, closer to what is the current

state of computing industry vis-à-vis internet browsers and platforms, the recorded savings could exceed 95% test cases

for strength 2.

Solution

The parameters and values used by the covering array definition are listed in the table bellow.

 Parameters

 Web Browser Platform Network Connection

V
a

lu
es

 Internet Explorer Windows LAN

Safari Macintosh Dialup

Mozilla Firefox Linux

Solaris

Table 6 Covering array definition (sample)

The maximum number of all possible combinations is 24 (3 x 4 x 2). The minimum number of

combinations for strength 2 is 12 (4 x 3).

Different construction algorithms used for covering arrays may generate a different numbers of rows. The

following is a possible covering array (with no constraints) for the provided definition. It is represented as a

table with a heading row and an additional column ID attached for identification purposes.

ID Web Browser Platform Network Connection

1 Internet Explorer Solaris LAN

2 Safari Macintosh Dialup

3 Mozilla Firefox Windows LAN

4 Safari Linux LAN

5 Internet Explorer Linux Dialup

6 Mozilla Firefox Macintosh LAN

7 Mozilla Firefox Linux Dialup

8 Internet Explorer Windows Dialup

http://en.wikipedia.org/wiki/Comparison_of_web_browsers#Operating_system_support

 Combinatorial Test Models ©2005-2006 QTAssistant.com

8

ID Web Browser Platform Network Connection

9 Safari Solaris Dialup

10 Internet Explorer Macintosh Dialup

11 Safari Windows LAN

12 Mozilla Firefox Solaris Dialup

Table 7 Covering array (sample)

However, in real life, “Internet Explorer” is not running on “Linux” or “Solaris”. Safari also is a Mac-

running browser only. By placing constraints on the definition, certain test cases can be avoided.

“Internet Explorer” restrictions may be represented2 as an “Exclusion” {“Web Browser”: [“Internet

Explorer”], “Platform”: [“Linux”, “Solaris”]} meaning that test cases using inputs containing any of

(“Internet Explorer”, “Linux”) or (“Internet Explorer”, “Solaris”), are prohibited.

Just to show how a wider coverage can be achieved with one exclusion, the expression {“Web Browser”:

[“Internet Explorer”, “Safari”], “Platform”: [“Linux”, “Solaris”]} dismisses inputs containing any of

(“Internet Explorer”, “Linux”), (“Internet Explorer”, “Solaris”), (“Safari”, “Linux”) or (“Safari”, “Solaris”).

The constrained covering array is shown in Table 8.

ID Web Browser Platform Network Connection

1 Internet Explorer Macintosh LAN

2 Safari Windows Dialup

3 Mozilla Firefox Solaris Dialup

4 Mozilla Firefox Linux LAN

5 Internet Explorer Windows Dialup

6 Safari Macintosh LAN

7 Mozilla Firefox Windows LAN

8 Mozilla Firefox Macintosh Dialup

9 Mozilla Firefox Linux Dialup

10 Mozilla Firefox Solaris LAN

Table 8 Constrained covering array (sample)

Table 8 still contains one invalid test case (“Safari”, “Windows”), which can be addressed by adding the

exclusion {“Web Browser”: [“Safari”], “Platform”: [“Windows”]}. The final and correct set of test cases is

shown in Table 9.

ID Web Browser Platform Network Connection

1 Internet Explorer Macintosh LAN

2 Mozilla Firefox Windows LAN

3 Safari Macintosh Dialup

4 Mozilla Firefox Linux Dialup

5 Mozilla Firefox Solaris Dialup

6 Safari Macintosh LAN

7 Internet Explorer Windows Dialup

8 Mozilla Firefox Linux LAN

9 Mozilla Firefox Macintosh LAN

10 Mozilla Firefox Solaris LAN

Table 9 Constrained and complete with real-life exclusions covering array (sample)

2 A future revision of this paper will seek alignment with UML 2 OCL available specifications.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

9

An “Inclusion” can be represented as {“Web Browser”: “Internet Explorer”, “Platform”: “Macintosh”,

“Network Connection”: “Dialup”}.

Conclusion

The solution can be gradually determined through an iterative and simple procedure.

1. Determine parameters and input values.

2. Select the covering array strength.

3. Analyze the resulting covering array and amend its definition with inclusions and/or exclusions as

needed.

4. Reiterate from any step above.

This routine is applicable for non-trivial problems in equal measure.

Relationships between concepts

This section summarizes some important relationships between the defined concepts.

o The number of rows in the covering array is equal to the number of test cases which should be

executed.

o A row in a covering array provides the inputs of a test case.

o A test objective for each test case is inferable through analysis of each row in a covering array.

Combinatorial Test Model Diagram

A CTM Diagram revolves around five simple graphical elements: covering array definition, parameter,

value, placeholder and link.

Covering Array Definition

This element represents the Covering Array Definition concept. An example with a structure that matches

Table 6 content is depicted by Figure 1.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

10

Figure 1 Graphical notation for the Covering Array Definition concept

Operation List

 Delete

 Add Parameter

 Remove Parameter

 Add Placeholder

 Remove Placeholder

 Modify Strength

 Add Target Context

 Remove Target Context

 Change Label

 Add Inclusion

 Remove Inclusion

 Add Exclusion

 Remove Exclusion

 Link with a Placeholder (one only)

 Drop Link

Parameter

This element represents the Parameter concept. An example with a structure that matches the Web Browser

parameter in Table 6 is depicted by Figure 2.

Figure 2 Graphical notation for the Parameter concept.

Operation List

 Combinatorial Test Models ©2005-2006 QTAssistant.com

11

 Delete

 Add Value

 Remove Value

 Add Target Context

 Remove Target Context

 Change Label

Value

This element represents the Value concept. An example with a structure that matches the “Internet

Explorer” value, of the “Web Browser” parameter, listed in Table 6 is depicted by Figure 3.

Figure 3 Graphical notation for the Value concept

Operation List

 Delete

 Add Target Context

 Remove Target Context

 Change Label

Placeholder

This element represents the Placeholder concept in its unlinked state. It is depicted by Figure 4.

Figure 4 Graphical notation for the Placeholder concept

Operation List

 Delete

 Accept Link from another Covering Array (one only).

 Drop Link

Link

This element realizes a relationship between two covering arrays. A link between two covering arrays is

shown in Figure 5. The numeric value label displayed with the link represents the N of the source covering

array.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

12

Figure 5 A link between two covering arrays

Operation List

 Delete

 Combinatorial Test Models ©2005-2006 QTAssistant.com

13

An Example Case Study: Web-based Mortgage
Calculator

To illustrate the proposed approach, a sample application has been designed and built, inspired by a real life

example. The requirements were selected such that the complexity of the application to require a non-trivial

combinatorial test model, yet uncluttered, easy to follow and relevant to a wide range of other applications.

Integration with IBM Rational Functional Tester is also provided, to address integration with automation

tools.

Mortgage Calculator High Level Requirements

The major use case is “Fill in the Mortgage Scenario”. The main screen parts supporting this use case are

shown in Figure 6 and Figure 7.

Figure 6 Mortgage Calculator GUI overview

Figure 7 Other Payment Options Input Overview

Requirements summary

 Combinatorial Test Models ©2005-2006 QTAssistant.com

14

 The Mortgage Calculator must support user inputs as listed in Table 10.

Short Description Notes

Mortgage amount User entered. Defaults to $100,000.00

Product Category User entered. Defaults to Fixed.

Term User entered. Defaults to 60 months.

Promotional Rate User entered. Defaults to 0.

Promotional Period User entered. Defaults to 0.

Interest Rate User entered. Defaults to 5.

Proposed Amortization User entered. Defaults to 25 years.

Payment Frequency User entered. Defaults to Monthly.

Promotional Payment The user may temporarily override the system calculated value.

Payment The user may temporarily override the system calculated value.

Funding Date User entered or determined from Interest Adjustment Date.

Interest Adjustment Date User entered or determined from First Payment Date or from Funding

Date.

First Payment Date User entered or determined from Interest Adjustment Date.

Payment Acceleration User entered. Defaults to None.

Payment Round Up User entered. Defaults to None.

Payment Increase Percentage

Option

User entered. Defaults to 0.

Payment Increase Amount Option User entered. Defaults to 0.

Payment Increase Timing Option Uset entered. Defaults to Once.

Table 10 List of user inputs

 The Mortgage Calculator must calculate and display values as listed in Table 11.

Short Description Notes

Number of payments

during

the Term

A function of payment frequency and term duration.

Number of payments

during

the Proposed

Amortization

A function of payment frequency and amortization duration.

Promotional Payment Represents a minimum value that matches the proposed amortization. A

function of mortgage amount, payment frequency, promotional rate,

amortization duration, product category.

Payment Represents a minimum value that matches the proposed amortization. A

function of mortgage amount, payment frequency, rate, amortization duration,

product category.

Promotional Payment

w/ Options applied

A function of options and promotional payment.

Payment w/ Options

applied

A function of options and payment.

Funding Date As a function of Interest Adjustment Date

Interest Adjustment

Date

As a function of Funding Date or First Payment Date

First Payment Date As a function of Interest Adjustment Date

Promo Expiry Date As a function of Funding Date and Promotional Period

Maturity Date As a function of Interest Adjustment Date and Term

Balance At Maturity A function of term, rate, payment(s).

Remainder

Amortization (duration)

For convenience, the duration is represented as whole years and months.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

15

Short Description Notes

Remainder

Amortization

(payments)

Remainder amortization duration represented as payments. A function of

remainder amortization duration and payment frequency.

Interest To Maturity

(end of Term)

Interest To Amortized

Mortgage

Assumes current conditions until the mortgage is fully amortized (remaining

balance zero).

Revised Amortization

(duration)

For convenience, the duration is represented as whole years and months.

Revised Amortization

(payments)

Revised amortization represented as payments. A function of revised

amortization duration and payment frequency.

Table 11 List of calculated user fields

 A product category selection drives the availability of input fields according to Table 12.

High level category features Promotional

Rate

Promotional

Period

Promotional

Payment

Fixed Rate

Single Rate/Single Payment
(N/A) (N/A) (N/A)

Variable Rate

Single Rate/Single Payment
(N/A) (N/A) (N/A)

Fixed Rate

Promotional Rate/Payment

Ongoing Rate/Payment

Variable Rate

Promotional Rate

Single Payment

 (N/A)

Table 12 Input fields availability based on Product Category selection

 The system must provide automatic date adjustments between “Funding/Renewal Date”,

“IAD/Last Payment Date” and “First Payment Date”. (For the purposes of this paper, it is assumed

that these fields are functioning as a pseudo-radio buttons group.)

 The Other Payment Options panel will exhibit the following behavior:

o Accelerate and Round Up must function independently of each other and the rest of

panel’s fields; the user may opt-out of both.

o Percentage Payment Increase Option is mutually exclusive with Amount Payment

Increase Option. The user may opt-out of both.

o The timing (“Once” or at “Anniversaries”) of a Payment Increase Option is applicable

only if a non-zero valued Payment Increase Option has been specified.

 An adjustment to any input field will trigger recalculations of all other fields.

Combinatorial Test Model-based solution design

Define the Covering Array Definition for the date input fields

Mutually exclusive parameters can be modeled as values of one surrogate parameter. Given the mechanics

of the combinatorial test models, only one of parameter’s values is used in a test at any given time, hence,

 Combinatorial Test Models ©2005-2006 QTAssistant.com

16

the mutually exclusive condition is fulfilled by definition. One possible implementation is shown in Figure

8.

Figure 8 The "Funding/IAD/First Payment" implemented as Parameter

This approach is easy to model and could be considered structured and machine parse-able when using

rigorous notational conventions. However, when considering the whole picture (for manual or automated

testing), the savings in the modeling area is probably quickly offset by the overhead required to consume

the result. The generated set of test cases now contains “overloaded” columns. An overloaded column is

one that changes its binding to another input field as a function of the value in the cell.

A more robust model could be developed by using the alternative to the above, i.e. constructing a Covering

Array Definition instead. The parameters will match the input fields (see Figure 9).

Figure 9 The "Funding/IAD/First Payment" implemented as Covering Array Definition (1st

iteration)

The problem with this first iteration stays with the inability of this Covering Array Definition to deliver on

the mutually exclusive condition. To assist with this, a new value (N/A) will be added to the value set of

each parameter (see Figure 10).

Figure 10 The "Funding/IAD/First Payment" Covering Array Definition

 Combinatorial Test Models ©2005-2006 QTAssistant.com

17

A quick look at the proposed test cases (Figure 11) will show that we have more than the expected four

combinations, with some invalid. The solution to this is to place appropriate constraints and monitor the

outcome of each. One constraint is to enforce mutually exclusiveness between “Funding” and “IAD”

parameters (see Figure 12 for rule implementation and results). Following the same principle, two new

constraints are added for “Funding” and “First Payment” and “IAD” and “First Payment” (Figure 13 and

Figure 14, respectively). Figure 14 shows that the expected result has now been achieved.

Figure 11 Unconstrained test cases for the "Funding/IAD/First Payment" Covering Array Definition

Figure 12 Specifying constraints to make Funding and IAD mutually exclusive.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

18

Figure 13 Specifying constraints to make Funding and First Payment mutually exclusive.

Figure 14 Specifying constraints to make IAD and First Payment mutually exclusive.

Define the Covering Array Definition for other payment options input
fields

Given the requirements for the Payment Options Panel, two Covering Array Definitions had been created.

Define the Covering Array Definition for Increases

This Covering Array Definition is built on the same principle as the “Funding/IAD/First Payment” since

mutually exclusiveness between Percentage and Amount is required. However, the element is extended to

include the Timing input field and the applicability conditions around it (see Figure 15).

 Combinatorial Test Models ©2005-2006 QTAssistant.com

19

Figure 15 The “Increases” Covering Array Definition

Without any constraints, the resulting test cases are shown in Figure 16.

Figure 16 Test cases generated by an unconstrained “Increases” Covering Array Definition

The rules required to achieve the expected results are summarized bellow:

 Figure 17 – The Timing input field is mandatory for non-zero Percentage

 Figure 18 – The Timing input field is mandatory for non-zero Amount

 Figure 19 – The Timing input field is not applicable when Percentage and Amount is not

specified.

 Figure 20 – Percentage and Amount fields are mutually exclusive.

The result depicted in Figure 20 is now a valid set of test cases.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

20

Figure 17

Figure 18

 Combinatorial Test Models ©2005-2006 QTAssistant.com

21

Figure 19

Figure 20

Define the “Other Payment Options” Covering Array Definition

This new element is using the output from “Increases” Covering Array Definition with the rest of the input

fields from the Other Payment Options panel, namely “Accelerate” and “Round Up” (see Figure 21).

 Combinatorial Test Models ©2005-2006 QTAssistant.com

22

Figure 21 The “Other Payment Options” Covering Array Definition

The resulting test cases for “Other Payment Options” are shown in Figure 22.

Figure 22 Test cases for “Other Payment Options” Covering Array Definition

Define the Main Covering Array Definition

With all the intricate conditions now neatly sorted out, the “Main” Covering Array Definition, which brings

all the parameters together in a comprehensive test matrix, is simple to define: list all the remaining input

fields, add test values, and link the two Covering Array Definition (see Figure 23).

 Combinatorial Test Models ©2005-2006 QTAssistant.com

23

Figure 23 The “Main” Covering Array Definition bringing together all the inputs

The set of test case inputs is listed bellow.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

24

ID Funding IAD FirstPymt Accel Round % Amount When
Mortgage
Amount

Product
Category Term

Promo
Rate

Promo
Period

Interes
tRate

Am
(months)

Pymt
Frequency PromoPymt Pymt

1 (N/A) 2006-03-03 (N/A) false false (N/A) $50.00 OnceOnly $100,000.00 Fixed 120 (N/A) (N/A) 6.75 240 Weekly (N/A) (default)

2 2006-02-28 (N/A) (N/A) true false 3.5% (N/A) Anniversaries $250,000.00 Fixed/2Rates/2Payments 36 0 9 5 300 Semimonthly (default) (default)

3 2006-02-24 (N/A) (N/A) true true (N/A) $50.00 OnceOnly $100,000.00 Fixed/2Rates/2Payments 60 4.55 9 6.75 300 Biweekly $1,400.54 (default)

4 (N/A) (N/A) 2006-03-15 false true (N/A) (N/A) (N/A) $100,000.00 Variable 12 (N/A) (N/A) 5 240 Monthly (default) (default)

5 2006-02-24 (N/A) (N/A) true false (N/A) (N/A) (N/A) $250,000.00 Fixed 84 (N/A) (N/A) 5 300 Biweekly (N/A) (default)

6 2006-02-28 (N/A) (N/A) false true 3.5% (N/A) Anniversaries $250,000.00 Variable 6 (N/A) (N/A) 6.75 240 Semimonthly (N/A) (default)

7 (N/A) 2006-03-03 (N/A) true true (N/A) $50.00 Anniversaries $250,000.00 Variable/2Rates/1Pymt 60 4.55 9 5 240 Weekly (default) (default)

8 (N/A) (N/A) 2006-03-15 false false 3.5% (N/A) OnceOnly $250,000.00 Fixed 36 (N/A) (N/A) 6.75 300 Monthly (N/A) (default)

9 (N/A) 2006-03-03 (N/A) true true 3.5% (N/A) OnceOnly $100,000.00 Variable 6 (N/A) (N/A) 5 300 Biweekly (default) (default)

10 2006-02-24 (N/A) (N/A) false false (N/A) $50.00 Anniversaries $250,000.00 Fixed 12 (N/A) (N/A) 6.75 300 Semimonthly (default) (default)

11 (N/A) 2006-03-03 (N/A) true true 3.5% (N/A) OnceOnly $250,000.00 Fixed/2Rates/2Payments 84 0 9 6.75 240 Monthly $1,400.54 (default)

12 2006-02-28 (N/A) (N/A) false false 3.5% (N/A) OnceOnly $100,000.00 Fixed/2Rates/2Payments 120 0 9 5 300 Weekly $1,400.54 (default)

13 (N/A) 2006-03-03 (N/A) true false (N/A) (N/A) (N/A) $100,000.00 Variable/2Rates/1Pymt 60 0 9 6.75 300 Semimonthly (N/A) (default)

14 (N/A) 2006-03-03 (N/A) false true 3.5% (N/A) Anniversaries $100,000.00 Fixed/2Rates/2Payments 36 4.55 9 5 240 Biweekly $1,400.54 (default)

15 2006-02-28 (N/A) (N/A) true true (N/A) $50.00 Anniversaries $100,000.00 Fixed/2Rates/2Payments 84 4.55 9 6.75 300 Semimonthly $1,400.54 (default)

16 2006-02-28 (N/A) (N/A) false false (N/A) $50.00 OnceOnly $250,000.00 Fixed/2Rates/2Payments 120 4.55 9 5 300 Monthly (default) (default)

17 (N/A) 2006-03-03 (N/A) true true (N/A) $50.00 OnceOnly $250,000.00 Variable 84 (N/A) (N/A) 5 240 Weekly (default) (default)

18 (N/A) 2006-03-03 (N/A) false false (N/A) $50.00 Anniversaries $100,000.00 Variable 60 (N/A) (N/A) 5 240 Monthly (N/A) (default)

19 (N/A) 2006-03-03 (N/A) false true (N/A) (N/A) (N/A) $250,000.00 Fixed/2Rates/2Payments 120 0 9 6.75 300 Biweekly $1,400.54 (default)

20 (N/A) 2006-03-03 (N/A) true false 3.5% (N/A) Anniversaries $100,000.00 Variable 12 (N/A) (N/A) 6.75 240 Biweekly (N/A) (default)

21 (N/A) (N/A) 2006-03-15 true false (N/A) (N/A) (N/A) $250,000.00 Fixed/2Rates/2Payments 120 4.55 9 6.75 240 Semimonthly $1,400.54 (default)

22 2006-02-24 (N/A) (N/A) true true (N/A) $50.00 Anniversaries $250,000.00 Fixed 6 (N/A) (N/A) 5 240 Monthly (N/A) (default)

23 (N/A) (N/A) 2006-03-15 false true 3.5% (N/A) Anniversaries $100,000.00 Variable/2Rates/1Pymt 60 0 9 6.75 300 Biweekly (default) (default)

24 2006-02-28 (N/A) (N/A) false false (N/A) $50.00 Anniversaries $100,000.00 Variable/2Rates/1Pymt 60 4.55 9 6.75 240 Biweekly (N/A) (default)

25 (N/A) 2006-03-03 (N/A) false false 3.5% (N/A) OnceOnly $250,000.00 Variable 6 (N/A) (N/A) 6.75 240 Weekly (default) (default)

26 2006-02-24 (N/A) (N/A) false false (N/A) $50.00 OnceOnly $250,000.00 Variable 36 (N/A) (N/A) 5 240 Weekly (default) (default)

27 2006-02-28 (N/A) (N/A) true true 3.5% (N/A) OnceOnly $100,000.00 Fixed 12 (N/A) (N/A) 6.75 240 Weekly (N/A) (default)

28 2006-02-28 (N/A) (N/A) true true (N/A) $50.00 OnceOnly $250,000.00 Fixed 60 (N/A) (N/A) 6.75 240 Semimonthly (N/A) (default)

29 2006-02-28 (N/A) (N/A) false true (N/A) (N/A) (N/A) $100,000.00 Variable/2Rates/1Pymt 60 4.55 9 5 240 Weekly (N/A) (default)

30 2006-02-24 (N/A) (N/A) true false 3.5% (N/A) Anniversaries $100,000.00 Variable/2Rates/1Pymt 60 4.55 9 5 240 Monthly (default) (default)

31 (N/A) (N/A) 2006-03-15 true false (N/A) (N/A) (N/A) $100,000.00 Variable 6 (N/A) (N/A) 6.75 300 Weekly (default) (default)

 Combinatorial Test Models ©2005-2006 QTAssistant.com

25

ID Funding IAD FirstPymt Accel Round % Amount When
Mortgage
Amount

Product
Category Term

Promo
Rate

Promo
Period

Interes
tRate

Am
(months)

Pymt
Frequency PromoPymt Pymt

32 (N/A) (N/A) 2006-03-15 false false (N/A) $50.00 OnceOnly $100,000.00 Fixed/2Rates/2Payments 84 0 9 5 240 Semimonthly $1,400.54 (default)

33 2006-02-28 (N/A) (N/A) true false (N/A) (N/A) (N/A) $250,000.00 Fixed 12 (N/A) (N/A) 5 300 Monthly (N/A) (default)

34 (N/A) (N/A) 2006-03-15 false false (N/A) $50.00 Anniversaries $250,000.00 Fixed/2Rates/2Payments 120 0 9 5 240 Weekly $1,400.54 (default)

35 (N/A) (N/A) 2006-03-15 false false (N/A) $50.00 OnceOnly $100,000.00 Variable 6 (N/A) (N/A) 5 240 Biweekly (N/A) (default)

36 2006-02-24 (N/A) (N/A) false true 3.5% (N/A) Anniversaries $100,000.00 Fixed 12 (N/A) (N/A) 6.75 300 Monthly (N/A) (default)

37 2006-02-24 (N/A) (N/A) false false 3.5% (N/A) OnceOnly $100,000.00 Variable 120 (N/A) (N/A) 6.75 240 Semimonthly (default) (default)

38 2006-02-24 (N/A) (N/A) true true 3.5% (N/A) OnceOnly $250,000.00 Variable/2Rates/1Pymt 60 0 9 5 300 Semimonthly (N/A) (default)

39 (N/A) (N/A) 2006-03-15 true true (N/A) $50.00 OnceOnly $250,000.00 Fixed/2Rates/2Payments 120 0 9 6.75 300 Monthly (default) (default)

40 (N/A) (N/A) 2006-03-15 true true (N/A) $50.00 OnceOnly $100,000.00 Fixed 6 (N/A) (N/A) 5 300 Biweekly (N/A) (default)

41 (N/A) (N/A) 2006-03-15 true true (N/A) $50.00 Anniversaries $100,000.00 Variable 12 (N/A) (N/A) 6.75 300 Biweekly (default) (default)

42 (N/A) (N/A) 2006-03-15 true false 3.5% (N/A) Anniversaries $250,000.00 Fixed 84 (N/A) (N/A) 6.75 300 Weekly (N/A) (default)

43 (N/A) (N/A) 2006-03-15 false false (N/A) $50.00 Anniversaries $100,000.00 Variable 6 (N/A) (N/A) 5 300 Weekly (N/A) (default)

44 2006-02-24 (N/A) (N/A) false false 3.5% (N/A) OnceOnly $250,000.00 Variable 12 (N/A) (N/A) 6.75 240 Biweekly (default) (default)

45 2006-02-24 (N/A) (N/A) false true (N/A) (N/A) (N/A) $250,000.00 Fixed 6 (N/A) (N/A) 5 300 Semimonthly (default) (default)

46 2006-02-24 (N/A) (N/A) false false (N/A) $50.00 OnceOnly $250,000.00 Variable 12 (N/A) (N/A) 6.75 240 Weekly (N/A) (default)

47 (N/A) (N/A) 2006-03-15 true false (N/A) (N/A) (N/A) $250,000.00 Fixed/2Rates/2Payments 36 0 9 6.75 240 Monthly (default) (default)

48 2006-02-24 (N/A) (N/A) true false 3.5% (N/A) Anniversaries $250,000.00 Fixed 6 (N/A) (N/A) 6.75 300 Biweekly (N/A) (default)

49 2006-02-28 (N/A) (N/A) true true (N/A) $50.00 OnceOnly $100,000.00 Variable 12 (N/A) (N/A) 6.75 240 Weekly (default) (default)

50 (N/A) (N/A) 2006-03-15 true true (N/A) $50.00 Anniversaries $100,000.00 Fixed/2Rates/2Payments 36 0 9 5 240 Weekly $1,400.54 (default)

51 2006-02-28 (N/A) (N/A) false false 3.5% (N/A) OnceOnly $250,000.00 Variable/2Rates/1Pymt 60 4.55 9 6.75 300 Weekly (default) (default)

52 2006-02-28 (N/A) (N/A) true false 3.5% (N/A) Anniversaries $100,000.00 Fixed/2Rates/2Payments 120 0 9 5 300 Biweekly $1,400.54 (default)

53 (N/A) (N/A) 2006-03-15 true true 3.5% (N/A) OnceOnly $100,000.00 Fixed/2Rates/2Payments 120 4.55 9 6.75 300 Biweekly (default) (default)

54 (N/A) (N/A) 2006-03-15 true true 3.5% (N/A) OnceOnly $250,000.00 Fixed/2Rates/2Payments 36 4.55 9 5 240 Weekly $1,400.54 (default)

55 2006-02-28 (N/A) (N/A) false true 3.5% (N/A) Anniversaries $250,000.00 Variable 84 (N/A) (N/A) 5 240 Weekly (default) (default)

56 (N/A) (N/A) 2006-03-15 true true (N/A) $50.00 OnceOnly $100,000.00 Variable 36 (N/A) (N/A) 5 300 Monthly (default) (default)

57 2006-02-28 (N/A) (N/A) false false 3.5% (N/A) OnceOnly $250,000.00 Variable 84 (N/A) (N/A) 6.75 240 Semimonthly (default) (default)

58 2006-02-24 (N/A) (N/A) false false (N/A) $50.00 OnceOnly $100,000.00 Variable/2Rates/1Pymt 60 4.55 9 5 240 Semimonthly (default) (default)

59 (N/A) (N/A) 2006-03-15 false false (N/A) $50.00 Anniversaries $100,000.00 Variable 36 (N/A) (N/A) 5 300 Weekly (N/A) (default)

60 (N/A) (N/A) 2006-03-15 false true (N/A) (N/A) (N/A) $250,000.00 Variable 36 (N/A) (N/A) 6.75 240 Weekly (default) (default)

61 (N/A) 2006-03-03 (N/A) false false (N/A) $50.00 Anniversaries $100,000.00 Fixed 84 (N/A) (N/A) 6.75 300 Biweekly (N/A) (default)

62 (N/A) (N/A) 2006-03-15 false true 3.5% (N/A) Anniversaries $250,000.00 Variable 120 (N/A) (N/A) 6.75 300 Biweekly (N/A) (default)

 Combinatorial Test Models ©2005-2006 QTAssistant.com

26

ID Funding IAD FirstPymt Accel Round % Amount When
Mortgage
Amount

Product
Category Term

Promo
Rate

Promo
Period

Interes
tRate

Am
(months)

Pymt
Frequency PromoPymt Pymt

63 (N/A) (N/A) 2006-03-15 true true (N/A) $50.00 Anniversaries $250,000.00 Variable 120 (N/A) (N/A) 6.75 300 Biweekly (default) (default)

64 2006-02-28 (N/A) (N/A) true true (N/A) $50.00 OnceOnly $250,000.00 Variable/2Rates/1Pymt 60 0 9 5 300 Monthly (N/A) (default)

65 (N/A) 2006-03-03 (N/A) false true (N/A) (N/A) (N/A) $250,000.00 Fixed/2Rates/2Payments 84 4.55 9 6.75 300 Weekly $1,400.54 (default)

Table 13 Test Cases generated by the "Main" Covering Array Definition

 Combinatorial Test Models ©2005-2006 QTAssistant.com

27

Integration with IBM Rational Functional Tester

Note: The information is this section is applicable for QTAssistant MLCA plug-in version 1.0 and IBM

Rational Functional Tester 6.1 (RFT). For up-to-date information on QTAssistant’s MLCA plug-in

integration with other automation tools, please visit <http://www.qtassistant.com/mlca>.

The easiest way to integrate QTAssistant MLCA plug-in with IBM Rational Functional Tester 6.1 is

through Datapools.

1. In QTAssistant, implement the model. Upon completion, export the test cases to file using the

comma separated values format (extension *.csv).

2. In RFT, develop the automation script.

3. In RFT, create a new Datapool. Import the file you have exported from QTAssistant. Make sure

that “First Record is Variable Information” checkbox is ticked.

4. Upon successful completion, the information imported from the file should be displayed in a data

grid.

5. Associate the Datapool you’ve just created with the script you’re working with.

a. In RFT, from the Script menu, click “Find Literals and Replace with Datapool

References…”

http://www.qtassistant.com/mlca

 Combinatorial Test Models ©2005-2006 QTAssistant.com

28

b. From the dropdown, select the “Datapool Variable” to work with. Click “Find Next”.

c. In the script, replace the appropriate literal(s).

6. Repeat 5.a, 5.b and 5.c as needed.

 Combinatorial Test Models ©2005-2006 QTAssistant.com

29

References

[CA04] Colbourn, Charles J. Combinatorial Aspects of Covering Arrays, Computer Science and

Engineering Arizona State University, August 2004

[TP05] OMG UML Testing Profile Version 1.0, July 2005

[NS02] National Institute of Standards and Technology The Economic Impacts of Inadequate

Infrastructure for Software Testing, U.S. Department of Commerce, May 2002

[DE02] Kuhn, D. Richard, Reilly, Michael J. An Investigation of the Applicability of Design of

Experiments to Software Testing, National Institute of Standards and Technology, December

2002

	Using Combinatorial Test Models to Improve Software Testing Efficiency
	Abstract
	Copyrights and Trademarks

	Combinatorial Test Models
	Overview
	Background
	Basic concepts
	Concept examples
	Problem
	Solution
	Conclusion

	Relationships between concepts
	Combinatorial Test Model Diagram
	Covering Array Definition
	Operation List

	Parameter
	Operation List

	Value
	Operation List

	Placeholder
	Operation List

	Link
	Operation List

	An Example Case Study: Web-based Mortgage Calculator
	Mortgage Calculator High Level Requirements

	Figure 6 Mortgage Calculator GUI overview
	Figure 7 Other Payment Options Input Overview
	Requirements summary
	Combinatorial Test Model-based solution design
	Define the Covering Array Definition for the date input fields

	Figure 8 The "Funding/IAD/First Payment" implemented as Parameter
	Figure 9 The "Funding/IAD/First Payment" implemented as Covering Array Definition (1st iteration)
	Figure 10 The "Funding/IAD/First Payment" Covering Array Definition
	Figure 11 Unconstrained test cases for the "Funding/IAD/First Payment" Covering Array Definition
	Figure 12 Specifying constraints to make Funding and IAD mutually exclusive.
	Figure 13 Specifying constraints to make Funding and First Payment mutually exclusive.
	Figure 14 Specifying constraints to make IAD and First Payment mutually exclusive.
	Define the Covering Array Definition for other payment options input fields
	Define the Covering Array Definition for Increases

	Figure 15 The “Increases” Covering Array Definition
	Without any constraints, the resulting test cases are shown in Figure 16.
	Figure 16 Test cases generated by an unconstrained “Increases” Covering Array Definition
	The result depicted in Figure 20 is now a valid set of test cases.
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Define the “Other Payment Options” Covering Array Definition

	Figure 21 The “Other Payment Options” Covering Array Definition
	The resulting test cases for “Other Payment Options” are shown in Figure 22.
	Figure 22 Test cases for “Other Payment Options” Covering Array Definition
	Define the Main Covering Array Definition

	Figure 23 The “Main” Covering Array Definition bringing together all the inputs
	The set of test case inputs is listed bellow.
	Integration with IBM Rational Functional Tester
	References

